Log-in to SkyMapper

2023 publications | All publications

SkyMapper Publication

The first X-ray look at SMSS J114447.77-430859.3: the most luminous quasar in the last 9 Gyr

Kammoun, E. S. et al., 2023, Monthly Notices of the Royal Astronomical Society, 522, 5217 | View on ADS (2023MNRAS.522.5217K)

Abstract

SMSS J114447.77-430859.3 (z = 0.83) has been identified in the SkyMapper Southern Survey as the most luminous quasar in the last $\sim 9\, \rm Gyr$ . In this paper, we report on the eROSITA/Spectrum-Roentgen-Gamma (SRG) observations of the source from the eROSITA All Sky Survey, along with presenting results from recent monitoring performed using Swift, XMM-Newton, and NuSTAR. The source shows a clear variability by factors of ~10 and ~2.7 over time-scales of a year and of a few days, respectively. When fit with an absorbed power law plus high-energy cutoff, the X-ray spectra reveal a Γ = 2.2 ± 0.2 and $E_{\rm cut}=23^{+26}_{-5}\, \rm keV$ . Assuming Comptonization, we estimate a coronal optical depth and electron temperature of $\tau =2.5-5.3\, (5.2-8)$ and $kT=8-18\, (7.5-14)\, \rm keV$ , respectively, for a slab (spherical) geometry. The broadband SED is successfully modelled by assuming either a standard accretion disc illuminated by a central X-ray source, or a thin disc with a slim disc emissivity profile. The former model results in a black hole mass estimate of the order of $10^{10}\, \mathrm{ M}_\odot$ , slightly higher than prior optical estimates; meanwhile, the latter model suggests a lower mass. Both models suggest sub-Eddington accretion when assuming a spinning black hole, and a compact ($\sim 10\, r_{\rm g}$ ) X-ray corona. The measured intrinsic column density and the Eddington ratio strongly suggest the presence of an outflow driven by radiation pressure. This is also supported by variation of absorption by an order of magnitude over the period of $\sim 900 \ \rm d$ .

Citation Statistics

2 citations total
Correct as at 25 Feb, 2024

Citations by month:
Statistics correct as at 24 Feb, 2024